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The properties of variational formulations of problems in the deformation theory of plasticity are
investigated, in which the yield function depends on the first and second invariants of the stress tensor.
Exact solutions containing discontinuities are constructed for some problems. It is shown that solutions
containing discontinuities in the displacement field along certain lines (surfaces) can exist only in the
case when the yield surface lies within a specified set.

As is well known, the yield function F(o) governing the plasticity properties of a material is usually
assumed to be a convex function of the three invariants of the stress tensor ¢. Below we consider
variational formulations for displacement fields in plastic deformation problems in which F(o) depends
on the first and second invariants of 6. In this case the yield condition can be written in the form

F(Spo,lo®) <0 (0.1)

where Spo is the first invariant of the tensor o and ¢” is the deviator. Special cases of (0.1) are

F(o)=l021-b=<0 (02)

F(0) =102 +aSpo - b <0 (0.3)
F(0) = 6?1 + h(Spe) -6 < 0 (04)
F(0) =a%Spo)? + 0P -2 < 0 (03)

Here a and b are positive constants and 4 is a convex function. Condition (0.2) with b=+(2)k, (where
k, is the yield limit) corresponds to the von Mises yield criterion and is generally used for metals.
Condition (0.3) is called the generalized Coulomb-Mohr criterion {1, 2] and is used to analyse the
behaviour of soil, dry substances and granular media. The yield condition (0.4) is an extension of (0.3) [2],
while (0.5) holds for porous bodies [3] and for problems of the plane stress states of thin plates [4]. In Fig,
1 the numbers 1-4 indicate the boundaries of domains F(0)=0 corresponding to conditions (0.2)-(0.5).
We know that discontinuous solutions can occur in ideal plasticity problems. Various researchers have
investigated the conditions that arise along the lines of discontinuity (see, in particular, [4-7]). An
example of an exact solution of an elastic—plastic problem containing a discontinuous displacement field
is given in [8]. Mathematical properties of variational formulations for displacement fields in problems
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with the von Mises criterion were studied in [8-11}. It was shown that the original variational formulation
for the displacement field was mathematically ill-posed, because it excluded discontinuous functions. In
these papers abstract extensions of the corresponding problems were constructed with the class of
admissible functions extended to the space BD of functions of bounded deformation, or to certain of its
subsets. As well as complete extension, in many cases it is convenient to use the so-called partially
extended variational formulations [7]. Here functionals are defined over a wide class of discontinuous
functions and, unlike the case of complete extensions, they have a fairly simple form. The latter turns out
to be very important from the applied point of view, because they enable one to construct appropriate
numerical methods [12]. The present paper investigates extended variational formulations for problems
with yield criteria (0.3)-(0.5). Using them solutions with discontinuous displacement fields are construct-
ed for a range of problems.

The method of constructing these solutions is based on the simultaneous analysis of the displacement
problem and its dual stress problem. Since a solution of the latter exists and is unique, it provides the
possibility of constructing a lower bound for the displacement functional and of proving that it reaches a
minimum only at the discontinuous function.

Moreover, analysis of the extended formulations leads to the conclusion that in problems of the
deformational theory of plasticity with criterion (0.1) solutions containing discontinuities along certain
lines (surfaces) can occur only when the yield function satisfies the condition

F(Spo, lo?) = 10°1 + a,Spo-b, b>0 (0.6)

where a, =1/V(2) in the plane case and a, =1/V(6) in the three-dimensional case.

1. VARIATIONAL FORMULATIONS FOR DEFORMATIONAL PLASTICITY PROBLEMS

The classical formulation of problems of the deformational theory of plasticity consists of
determining a stress tensor o =o0(x) and a displacement vector u = u(x) satisfying the following
system of equations:

o;i+fi=0 inQ, i=Ll.,n (1.1)

ovj=g on I u-= u(,-’ onl, i=1l.,n 1.2)

g u) =o(uy; + uy), €0 =ApOu+dp Lj=l.,n 1.3)
Flo)<0 (1.4)

Mity-0) <0, Vie MY"; F)<0 (1.5)

Here Q is a bounded domain in R” (n=2, 3) whose boundary I' is Lipschitz-continuous with
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I'=Lul,, I}, =0, mesI; >0, A, are the components of the elasticity tensor, v is the
unit vector of the outward normal to T, f and g are the volume and surface forces u° is the
displacement specified on I}, M} is the set of symmetric matrices of dimensional nxn, the
comma denotes differentiation with respect to the corresponding index, and the summation
convention applies to repeated indices from 1 to n. We denote by L, (Q; R") and W;(Q; R")
spaces of vector-valued functions defined on Q whose components are respectively integral up
to degree p or belong to the Sobolev class W, .
We define the set of admissible displacement vectors

V = {u(x) € WHQ; RMlu=u0 on T}

and the sets M and Q of stress tensors satisfying, respectively, the equilibrium equations and
the given yield condition

M={(ce 2'0,'” +f,'=0 in Q, 6,-,-vj=g,~ on Fz, i=1,..,n}

0= (o€ o) e Kae.inQ), I=LyQM,")

where

K = {te M} IF(1) < 0}

We assume that the forces fand g are defined in such a way that a static admissible stress field
satisfying the yield condition, i.e. M nQ # @, exists, and also that

fe L@ RY, ge L.T;R%, u0e WyQ; R (16)
We define on O xV the Lagrangian
l(o,u)= ‘jl g;(u)0;;dx — G(0) — L(u) a.mn
where

Lw)=| fudx+ [ gudl, G(o)=
Q

1 | a(c,06)dx
r 2q

and a(c, ©)= A;0,0, is a positive-definite quadratic form. The Lagrangian [ generates the
following minimax problem: find a pair of functions (o*, u*)e QxV such that

llo,u ) <lc*, )< lo",u) Voe Q, YueV (1.8)

It is easy to show that if a saddle point of the Lagrangian / exists and is attained at sufficiently
smooth functions o* and u*, the latter are solutions of the classical formulation (1.1)—(1.5).
Conversely, if system (1.1)-(1.5) has a solution, the latter corresponds to the saddle point of /.
Hence problem (1.1)-(1.5) can be studied as a minimax problem with respect to the Lagrang-
ian/ [11, 13]. The following two problems are associated with it.

Problem P*: find a tensor 6* € Q such that

®(c*) = sup{®(0)lo € @}, D(0) = inf{l(0, ulu € V) 1.9)

Problem P: find a vector u*eV such that

Jw)=inf{Jw) ue V}, Ju)=sup{lc,u)ce Q) (1.10)
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Calculating the infimum and supremum in (1.9), (1.10) we obtain

{ | oyvuddi-G(o) if ceM (1.11)
(o) =
—o0 if oceM
J(w)= | H(e(u))dx - L(u) (1.12)
Q

where H: M - R is defined by
H(x) = sup{t;X; - G(t)it€ K}, Vke M, '

Problems (1.11) and (1.12) are dual with respect to one another, and from convex analysis we
know that if solutions o* and u* of problems P* and P exist, then (c*, u*) is a saddle point of
the Lagrangian / on the set O xV,and conversely, if a pair of functions (c*, u*) satisfying (1.8)
exists, then o* and u* are solutions of problems P* and P, respectively. Here

®(0) < ®(c) =", u")=JW") < Ju), VueV, VoeQ (1.13)

It follows directly from (1.13) that if functions o*eQ and w*eQ are found such that the
equality

(") =J(u") (1.14)

is satisfied, then o* and u* are solutions of problems P* and P. We know (see [11, 13]) that
problem P* has a unique solution c*if OQnM #@ and

®d(c’)= ggg 52{’ (o,u)= mf sugl(c, w)=J, (1.15)

However, problem P might not have a solution (an appropriate example for an elastic—plastic
problem with the von Mises criterion is given in [8]). This is associated with the fact that a
minimizing sequence may converge to a function that has discontinuities along certain lines
(surfaces). Since such functions do not belong to the set V and the functional J is not defined
on them, it is necessary to use a mathematical extension technique for the given variational
problem and to construct an extended problem (see [8-11]). The extended problem P*
consists of determining an element u* €V™* such that

I(u*) = inf{I(v)ive V"), where VCV* (1.16)

The problem P* always has a solution and preserves the exact lower bound of problem P. The
problem P* is also dual to P*, so that to the stress tensor 6* there corresponds a variable field
uw' eV* with
d(c") = I(u") 1.17)
It often turns out to be useful to use the so-called partially extended formulation (see [7])
where the extended functional J is defined on a set V such that VcV cV’', where V
contains a selection of certain discontinuous displacement fields. The problem P consists of
determining a vector-valued function # eV which minimizes the functional J
J (i) = inf{J (v)veV) (1.18)

Here
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Fw)=J(u) YueV; Tw)=1u) VueV, JTw)=J, YueV (1.19)

It follows directly from (1. 15)—(1 19) that if a solution of problem P exists, it is also a solution
to problem P (1.18), and in turn any solution of problem P is a solution of problem P*. Thus
if functions o*e Q and @ eV are found such that

&(c’)=T(a) (1.20)

then & is a solution of problem P*, and o* is a solution of the dual problem P*,
We will now restrict our attention to the simplest version of formulation (1.18), when a
discontinuity of the displacement field is only permitted at the domain boundary I. Then [7]

T(u)= | H(e@))dx - Lu)+ | ¥(S(v,u—u’))dl (1.21)
Q n

- 1
V=W (QR"), SeMy", S={s;}, ,-~—5(vu +V9;)
and the function ¥: M} - R is computed from

W(x) = sup{tyxjt € K} Vke MY (1.22)

Condition (1.20) in which the functional J has the form (1.21), can be used to construct exact
solutions with displacement discontinuities on the boundary I;.

We will formulate sufficient conditions for the existence of such a solution. To do this we
consider an auxiliary problem, which differs from the original one only by the specification of a
boundary condition on I, namely

u=wl onl; wle W;(Q; Rm), wo=ul (1.23)

The corresponding variational formulation for the displacements has the form
inf{ | H(ew))dx - L(ulu eV, } (1.24)
Q
Vi=(ue WyQ; R lu=wd on Iy}

Assertion 1. Suppose that a solution of problem (1.24) exists and is attained by the field
u*with corresponding stress tensor o* (the solution of the corresponding dual problem), and
that the following condition is satisfied

| (#SO, W —u®)) - v,o5w? -wdl=0 (1.25)
n

Then u* and o* are solutions of the problems P* and P*, respectively.

Proof. Since u* is a solution of problem (1.24) and o* is a solution of the corresponding dual
problem, then by the duality relations (see (1.14))

J@w')= ——j a(c®,c")dx + ; vioiwidl (1.26)

where 6* e QM. Combining (1.25) and (1.26), we obtain

Jw'y=J@' )+j P(S(V,w -u°))dl-——j a(s’,0 )dx+j vioju)dl
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which shows that condition (1.20) is satisfied and, consequently x* and o* are solutions of
problems P* and P*,
Thus, if the conditions of Assertion 1 are satisfied, then u* is a solutlon of the extended

AAAAAAAAA

problem, which contains a displacement discontinuity of magnitude w®—u® on the boundary
| A

Remark. Let K, and K, be convex sets corresponding to two different yield conditions F,
and F,

={te M{IF(D) <0}, i=12 K,CK, (1.27)
We denote the functions P and ¥ corresponding to these sets by H, and ¥ and put

O;,={ce Xlokx)e K;ae.inQ}, i=12
We consider two elastic-plastic problems in the domain €, differing solely in the choice of
yield condition. We assume we have found the solution o*, u* of the F=F, case, with c*e(Q,,
u*eV and

wy - L4
O(0") =x1 + A - L) (1.28)
%= [ Hie@Ddx, A= | (S(v.u" ~u®Ddl, i=1,2

Q i

If we also have o*e(, and
= A, (1.29)

then o* and u* are simuiltaneously also solutions of the second problem (with F=F,).
Indeed, since o*e(Q, and K, c K,, we have

®(c*) < sup{P(0)| 6 € O,) < sup{®(O)i 6 € 01} =B(c") (1.30)
Hyx) < Hy(x) VxeM" =y,<yx,
Using (1.28)—(1.30), we obtain
sup{®©)I 6 € Oz} =®(O") =3 + A — L") =Y + Ay - L") = Do) Voe O

Here we put o=0c* and conclude that condition (1.20) is satisfied in the second (F=F)
problem, so that o* and u* are solutions.

2. EXTENDED FORMULATIONS FOR PROBLEMS WITH YIELD
CONDITIONS (0.3)-(0.5)

For an isotropic medium the quadratic form a(t, T) can be written in the form

at, =73 L l‘tDlz + 5o nzK (Spr)?

where pt and K, are constants of elasticity for the material. In the case under consideration the
vield conditions also depend solely on the deviator and trace of the tensor, and so the functions
H and ¥ defined by (1.12) and (1.22) can be written as functions of two parameters s=Spe and
t =|e”|. For the von Mises yield condition the expressions for H and ¥ are known to be [13]
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pe?, 1<k /2p

K,
z*i 2 . —3
H(t,s) ) sS+he(t); ho(D) {k‘(ﬁr-k./zﬂ)r :>k,/\/§}1

D -
?(K)z{«/ik.m I, Spx=0
+o0, Spx=0

We will consider other cases.

The Coulomb-Mohr yield condition. Computing the supremum over the set K, correspond-
ing to condition (0.3), we obtain

( 2 KO 2 . as b
+—s, P —
e 2 s if P
H(t,5)={h(t,5)+ ACH it 1+%52 and hy(2,5)= 0 (2.1)
¥ s a +q nq 2u *
h(t,5), if hy(t,5)<0
where
2u b{s gb s qgb
= s £,§) = | = i Ls)=at——+—
i nzKo flts) a(n 4pa) v hths)=ar n+2ua
bSpx . D 1
‘I‘(K) ={ p” , if Ix“I=< —n;pr Vke M:xa (2-2)
+o0, otherwise
Since

IsP (2L 2+ Liv 2 6 =Vv,0, = Sp(S(V, V)V, = V-V, V
v, 0)l= "'n—’h)vi +2 Uy » By iV p s T v

then ¥(S(v, v)) can be finite only when
a<a,=1/(n -—n)” 2.3)

When a>a, y(S(v, v)=+ee for any non-zero vector v. Thus a solution containing a discon-
tinuity (which corresponds to v=0) along some line or surface can exist only if the constant a
in condition (0.3) satisfies condition (2.3).

Yield condition (0.4). Explicit expressions for H and ¥ cannot be constructed for arbitrary
convex functions h. However, one can establish some important properties of these functions,
We introduce the notation

Kip={te M7 1Pl +aSpt < b}, W,u(x) = sup{t,x; T € Ky}

As a direct consequence of the definition of ¥ we have the following assertion.
Assertion 2.1f K,, cKcK,,, then

\P‘lh (x) « \F(K) = \PQbI (K) Vke M:xn

Corollary. Suppose that the set K corresponding to condition (0.1) contains the set K,
where a=a and b>0 (or, equivalently, that inequality (0.6) is satisfied). Then W(S(v,
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V)) = +oo for any v# 0, and, consequently, discontinuous solutions are impossible.
The value of the function ¥ can be calculated in two different cases, corresponding to
normal and tangential discontinuities.

Assertion 3. 1. Suppose that K c K, when a<a., 5>0 and

0= b le K
na
where 1eM” is the unit tensor, then
Y(S(v, v)) =v,bf(na), if hJ=0, v,>0 (24)
2. Suppose that the function H in (0.4) satisfies the condition
inf(h()) 1€ R} = ¢ > 00 2.5)
then

WSO, v) =(b-dN2, if v, =0. (26)

Proof. 1. In the case lv,1=0, v, >0 the condition 1S°(v, v)|<SpS(v, v)/(na) is obviously
satisfied when a<a, and using (2.2) we obtain

¥(S(v, v)) = sup{t;s, T € K} < sup{Tys;) T € K} = b/nav,
On the other hand
sup{tys;i T € K} = t(,-’,s,-j = b/nav,

and we thus obtain (2.4).
2. To prove the second part of the assertion we note that if v, =0, then |S°(v, v)I=lv, [V(s)

W(S(v, v)) = sup{Tys;} T € K} = DISP(v, v)}, D = sup{ht®l |1 € K}

Since [1° k= b- h(Spr), it follows from (2.5) that D =b~c and that (2.6) holds.
Yield condition (0.5). Here the expressions for ¥ and H have the form

Y(x)= —%JEP ki +n2a’1cPP , xeMy 27
2.2 2
Ht,s)= T 28)

- _sbrap), if P+E>
A.(sl/n—gh, ! 4n)+8,b(t-5.b 1 4) t +q2n2 an?

where A.=ba?V(1-8?), and 3. €[0, 1] is defined to be the root of the equation

IsISI(an‘J 1-82)=1t-8b(A/a? - 1)/(2p)

if A=4d* (which will, for example, be the case for an incompressible material in a plane stress
state), expression (2.8) is simplified considerably
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pe? if 181<b/2p

H@s) {b(}ef-bMu) if 181>b/2p

where ©% = s?+1?/(a’n*). We note that here, according to (2.7), discontinuities are possible in
the normal as well as the tangential field components. However, similar solutions cannot be
treated as a real discontinuity of the medium. In plane stress state problems, solutions contain-
ing such discontinuities are associated with the formation of a neck [4], while in three-
dimensional problems they can be considered as a mathematical description of localization
processes in plastic deformation {14], which are often accompanied by material decohesion and
dilation phenomena [15, 16).

3. SOME EXACT SOLUTIONS

We will use the results obtained in the first two sections to obtain exact solutions of
the problems of a twisted thick-walled cylinder and the deformed spherical layer, and to show
that for a broad collection of yield conditions the solution obtained has a discontinuous
displacement field.

3.1. Suppose Q={(r, ©, 2}l <r<rn, 0<O<2n, -d<z<d), u=Q,, u, u,), where (r,0, z)
are cylindrical coordinates. We consider a problem with yield criterion (0.4), where

h(t)= 0, h(0)=0 3.1)

and boundary conditions
u=(0,0,0) when r=ry, u=(0,U,0) whenr=r;, U =const (32)
0, =0,; =0y, =0 when z=1d (33)

where U= U, = Bb/ZJZ_uq, B=r —r’, and assume that the external forces f and g are zero. To
construct an exact solution of this problem we use Assertion 1, where the function w° satisfies
the conditions

wd=w}=(0,v,0) when r=r;, wW0=wj=(0,U,0) whenr=r (34

v=raU-U1>0

It is easy to verify that in this case the solution of the problem exists (1.24) and is determined as
follows:

u: = u: =0, ug=Cyr+Cyr! 3.5

c; = c:z = 0‘;; = o':r = o-;e =0, G:e = 2UC,r2 (3.6)
Cy =B Ury-vry), C3' =B ryrytory - Ur)

We note that o* € K n M. Condition (1.25), using the axisymmetry of u* and 6*, can be written
in the form

W(S(v, WD) = Gre(ry)v, v = (-1, 0, 0) 37

With the help of Assertion 3 and using (3.1) we obtain
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W(S(v, w) = bloiN2 (3.8)

Since v>0and C,= -—q’b/Z«fiu, it follows from (3.6)-(3.8) that (1.25) is satisfied. Thus u* and
o* defined by (3.5) and (3.6) are solutions of the problem with boundary conditions (3.2) and
(3.3) and the magnitude of the displacement discontinuity for =7 is equal to v. Note that
e(u*) is the unique tensor satisfying relations (1.3)~(1.5) for o =0o*, so that this problem has no
other solutions.

We thus conclude that for any yield law (0.4) satisfying condition (3.1) (see Fig. 2) the
problem of a twisted thick-walled cylinder with conditions (3.2)-(3.4) has a slip-type discon-
tinuity at »=r,.

32.Let Q={(r, ©, 9)lr<r<n, 0<O=<n, 0<o<2n}, u=(, W, u,), where (r, ©, ¢) are
spherical coordinates.

We consider the elastic—plastic problem in a domain Q assuming that the material obeys the
yield condition {0.3) and that there are no volume forces f. We specify the following boundary
conditions

u=(0,0,0) when r=r;, u=(,0,0) whenr=r; (39)

where U=Cr,, C=b/9%K,, a<a*.
Using (2.1) it is easy to show that condition (1.20) is satisfied when u* and o* have the form

¥'=@,0,0, u,=Cr, 6,=0p= Gy =bl3a (3.10)

Grp=Cyp = o =0
Here
7(u‘)z®(c*)z%€(r§+a3). c'eQNM (3.11)

According to (1.20) this means that 6* and u* are solutions of the variational problems P*
and P*. We note that u*=Cr, when r=r, and, consequently, the infimum of the extended
functional is attained at a discontinuous function.

We now consider the same problem, except that the yield condition is criterion (0.4) rather
than (0.3), with the function & specified by

h(ty=a,t, hbla)y=b (3.12)

The corresponding curves |6” I= b~ h(Spo) are shown in Fig. 3 (curves 1-3). We will show that
u* and o* defined by (3.10) are also solutions of this problem. To this end we use the remark in
Assertion 1 and put

Fy(0) =loPl + a,Spo - b, Fy(0) =16°! + k(Spo) - b

Since |6*2 |+h(Spo*)=h(b/a)=b we have o*e(,. Moreover, from (2.2) and the first part of
Assertion 1 it follows that (1.29) is satisfied. Thus u* and o* satisfy (3.11), and the infimum of
J(u) is attained at a discontinuous function.

In the case when a=a =1/Y6 one can construct an exact solution of the problem of a
deformed spherical layer with yield condition (0.3) and boundary conditions (3.9) when
U<U,=2br,13V(6)K,. If U<U,=28b/N(6)r7(3K,+4W), B=r, ~r’, the solution is elastic

u;, =ug=0, u, =Bl - e
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Fig. 2. Fig. 3.

In order to construct a solution for U, <U < U, we use Assertion 1, and choose the function w°
in (1.24) so that

0 0
w=w,when r=r;,, wP=wy; whenr=r,

w1 =(v,0,0), wh=(U,0,0)

where the constant v is defined by the equation

v 3 33K0 3Ko+4,,l. 2 bB
—| 2 + = U-—7—= 1
R e 619

We note that v>0 when U, <U <U,. In this case problem (1.24) has the following solution

Uy = ug=0, u,=Cir+Cy2 G =0’:¢ =Ggp =0 (3.14)

0: = 3K0Cl - % C2’ G‘G = c; = 3KOC] + %Cz
where
~ 2 N 22 .
Cy=Ury~vorpBl, Cy=ryi(or,—Ur)p? (3.15)
Taking (2.2) and (3.14) into account, condition (1.25) can be written in the form

3K,Cof21 - 2Cors =bN6 1

Using (3.13) and (3.15), it is easy to verify that this equality is satisfied. Thus «* and o* defined
by formulae (3.14) and (3.15) are solutions of the problem with boundary condition (3.9). For
U, <U < U, this solution has a discontinuity of magnitude v at r =r,. We note that since

26 3v6K,
r,_,”lczw —

F(c")= -b<0 Vre(nn]

then, according to (1.5), A, =0 and, consequently, e(x*) is the unique tensor which together
with o satisfies relations (1.4) and (1.5).
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