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The properties of variational formulations of problems in the deformation theory of plasticity are 

investigated, in which the yield function depends on the first and second invariants of the stress tensor. 

Exact solutions containing ~~n~nuiti~ are constructed for some problems. It is shown that solutions 

containing discontinuitia in the displacement field along certain lines (surfaces) can exist only in the 

case when the yield surface lies within a specified set. 

As is well known, the yield function F(a) governing the plasticity properties of a material is usually 
assumed to be a convex function of the three invariants of the stress tensor 6. Below we consider 
variational formulations for displacement fields in plastic deformation problems in which F(cr) depends 
on the first and second invariants of cr. In this case the yield condition can be written in the form 

where Spa is the fit invariant of the tensor cr and oD is the deviator. Special cases of (0.1) are 

F(o)=kPl+uspa-6aO (0.3) 

F(a) = &spo>* + isI* - 62 Q 0 (0.5) 

Here a and b are positive constants and /I is a convex function. Condition (0.2) with b = J(2)k. (where 
k. is the yield limit) corresponds to the von Mises yield criterion and is generally used for metals. 
Condition (0.3) is called the generalized Coulomb-Mohr criterion [l, 2] and is used to analyse the 
behaviour of soil, dry substances and granular media. The yield condition (0.4) is an extension of (0.3) [2], 
while (0.5) holds for porous bodies [3] and for problems of the plane stress states of thin plates [4]. In Fig. 
1 the numbers l-4 indicate the boundaries of domains F(a) Z+ 0 corresponding to conditions (0.2)-(05). 

We know that discontinuous solutions can occur in ideal plasticity problems. Various researchers have 
investigated the conditions that arise ,along the lines of discontinuity (see, in particular, [4-71). An 
example of an exact solution of an elastic-plastic problem containing a discontinuous displacement field 
is given in [S]. Mathematical properties of variational formulations for displacement fields in problems 
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Fig. 1. 

with the von Mises criterion were studied in [g-11]. It was shown that the original variational formulation 
for the displacement field was mathematically ill-posed, because it excluded discontinuous functions. In 
these papers abstract extensions of the corresponding problems were constructed with the class of 

admissible functions extended to the space BD of functions of bounded deformation, or to certain of its 

subsets. As well as complete extension, in many cases it is convenient to use the so-called partially 

extended variational formulations [7]. Here functionals are defined over a wide class of discontinuous 

functions and, unlike the case of complete extensions, they have a fairly simple form. The latter turns out 

to be very important from the applied point of view, because they enable one to construct appropriate 
numerical methods [12]. The present paper investigates extended variational formulations for problems 

with yield criteria (0.3)-(0.5). Using them solutions with discontinuous displacement fields are construct- 

ed for a range of problems. 
The method of constructing these solutions is based on the simultaneous analysis of the displacement 

problem and its dual stress problem. Since a solution of the latter exists and is unique, it provides the 

possibility of constructing a lower bound for the displacement functional and of proving that it reaches a 

minimum only at the discontinuous function. 
Moreover, analysis of the extended formulations leads to the conclusion that in problems of the 

deformational theory of plasticity with criterion (0.1) solutions containing discontinuities along certain 

lines (surfaces) can occur only when the yield function satisfies the condition 

~(~pCJ,~)~k#?+a,Spc~-b, b>O (O-6) 

where a, = l/4(2) in the plane case and a = l/4(6) in the three-dimensional case. 

1. VARIATIONAL FORMULATIONS FOR DEFORMATIONAL PLASTICITY PROBLEMS 

The classical formulation of problems of the deformational 
determining a stress tensor o = o(x) and a displacement vector 
system of equations: 

theory of plasticity consists of 
u = u(x) satisfying the following 

Oijj +h = 0 ‘ill Q, i = l***.* Il (1.1) 

OfjVj =gi on r*, I+= UP on rt, i = l,..., R (1.2) 

BIjW = ‘/$u,,j + uj,,)s e,,(u) = Aukpk, + ii,, i, j = l,..., n (1.3) 

F(0) S 0 (l-4) 

h& - au) =s 0, Vo E MI:‘“; F(z) d 0 (1.5) 

Here &2 is a bounded domain in W” (n = 2, 3) whose boundary r is Lipschitz-continuous with 
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r=r,ur,, r,nr,=0, mesr,>O, bw are the components of the elasticity tensor, v is the 
unit vector of the outward normal to I, f and g are the volume and surface forces u” is the 
displacement specified on r,, Ml? is the set of symmetric matrices of dimensional n x n, the 
comma denotes differentiation with respect to the corresponding index, and the summation 
convention applies to repeated indices from 1 to n. We denote by L,(R; I%“) and I+‘,‘@; R”) 
spaces of vector-valued functions defined on &2 whose components are respectively integral up 
to degree p or belong to the Sobolev class Wi. 

We define the set of admissible displacement vectors 

v = (U(X) E w&2; W)lu .= u” on r, ) 

and the sets M and Q of stress tensors satisfying, respectively, the equilibrium equations and 
the given yield condition 

M = (0 E ZlO~jj +fi = 0 in 0, OijVj = gi on I& i = l,..., n 1 

Q = (o E X10(x) E Ka.e. inn), Z = L,(O; M:-) 

where 

We assume that the forces fand g are defined in such a way that a static admissible stress field 
satisfying the yield condition, i.e. M n Q f 0, exists, and also that 

fE L*(R; W”), g E L,(r,;R"), UOE w:(a; W”) (l-6) 

We define on Q x V the Lagrangian 

where 

Z(o,u) = J eii(u)a&X - C(o) - L(u) (1.7) 
n 

L(U) = I f,U,dx+ I giUidl,- G(~) = ’ 
n r1 

2 i 4wJ)h 

and a(~, o) = ~k,040, is a positive-definite quadratic form. The Lagrangian 1 generates the 
following minimax problem: find a pair of functions (o*, u*) E Q x V such that 

40, u’) s I@‘, u’) G I@*, u) V’o E Q, Vu E V (1.8) 

It is easy to show that if a saddle point of the Lagrangian 1 exists and is attained at sufficiently 
smooth functions o* and u*, the latter are solutions of the classical 
Conversely, if system (l.l)-(1.5) has a solution, the latter corresponds 
Hence problem (l.l)-(1.5) can be studied as a minimax problem with 
ian 1 [ll, 131. The following two problems are associated with it. 

Problem P*: find a tensor o* E Q such that 

@(a*) = sup(@(o)lo E Q). @(a) = inf(Ka, u)lu E 

Problem P: find a vector u* E V such that 

formulation (1.1)~(i.5j. 
to the saddle point of 1. 
respect to the Lagrang- 

VI (1.9) 

J(u’) = inf{J(u)l u E V}, J(u) = sup{ I(o, u)l (T E Q) (1.10) 
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Calculating the infimum and supremum in (1.9), (1.10) we obtain 

if 0EA.f 

if aeM 

J(u) = I m(u))dx - L(u) 
l-2 

where H: v + R is defined by 

(1.11) 

(1.12) 

H(K) = sup(z$c~- G(o)1 ‘t E K), VK E M”;” 

Problems (1.11) and (1.12) are dual with respect to one another, and from convex analysis we 
know that if solutions o* and u* of problems P* and P exist, then (o*, u*) is a saddle point of 
the Lagrangian I on the set Q x V, and conversely, if a pair of functions (o*, u*) satisfying (1.8) 
exists, then o* and u* are solutions of problems P* and P, respectively. Here 

4(a) d @(a’) = /(CT’, u’) = J(U’) s J(u), vu E v, t/o E e (1.13) 

It follows directly from (1.13) that if functions o* E Q and u* E Q are found such that the 
equality 

@(a’) = AU’) (1.14) 

is satisfied, then o* and u* are solutions of problems P* and P. We know (see [ll, 131) that 
problem P* has a unique solution o* if Q n M f 0 and 

However, problem P might not have a solution (an appropriate example for an elastic-plastic 
problem with the von Mises criterion is given in [S]). This is associated with the fact that a 
minimizing sequence may converge to a function that has discontinuities along certain lines 
(surfaces). Since such functions do not belong to the set V and the functional J is not defined 
on them, it is necessary to use a mathematical extension technique for the given variational 
problem and to construct an extended problem (see [S-11]). The extended problem P’ 
consists of determining an element u+ E V’ such that 

I@+) = inf(l(u)l1) E v*)., where V c v’ (1.16) 

The problem P’ always has a solution and preserves the exact lower bound of problem P. The 
problem P* is also dual to P’, so that to the stress tensor o* there corresponds a variable field 
u+ E V’ with 

@(d) = I@+) (1.17) 

It often turns out to be useful to use the so-called partially extended formulation (see [7Q 
where the extended functional f is defined on a set 7 such that V c r cV2, where V 
contains a selection of certain discontinuous displacement fields. The problem P consists of 
determining a vector-valued function ii E r which minimizes the functional J’ 

J(g) = inf{i(u)lu o 7) (1.18) 

Here 
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J(u)=J(u) vu E v; f(u)= 1(u) VUE 8, i(u)P J, vu E v (1.19) 

It follows directly from (1.15)-(1.19) that if a solution of problem P exists, it is also a solution 
to problem P (1.18), and in_turn any solution of problem H is a solution of problem P’. Thus 
if functions o* E Q and ii E V are found such that 

O(d) = I(i) (1.20) 

then I is a solution of problem P’, and (IT* is a solution of the dual problem P*. 
We will now restrict our attention to the simplest version of formulation (1.18), when a 

discontinuity of the displacement field is only permitted at the domain boundary f’,. Then [7] 

J(u) = J H(E(u))& - L(u)+ J Y’(S(v,u - u”)Vl 
n r1 

v=w;(n;w”), SEfkqXn, S=(s& sg =t(4Uj +Vjui)) 

and the function Y: Ml:X, + W is computed from 

(1.21) 

Y(K) = SUP(Z~K~I z E K] QK E M”,X” (1.22) 

Condition (1.20) in which the functional 7 has the form (1.21), can be used to construct exact 
solutions with displacement discontinuities on the boundary r,. 

We will formulate sufficient conditions for the existence of such a solution. To do this we 
consider an auxiliary problem, which differs from the original one only by the specification of a 
boundary condition on I,, namely 

U=WO onI,; wo E Wi(f-J; UP), wo # uo (1.23 

The corresponding variational formulation for the displacements has the form 

inf J H(a(u))dx - L(u)lu E V, (1.24) 
R 

V,=(UE W:(Q;R~)Iu=donr,) 

Assertion 1. Suppose that a solution of problem (1.24) exists and is attained by the field 
u*with corresponding stress tensor o* (the solution of the corresponding dual problem), and 
that the following condition is satisfied 

J {‘I’(S(v,w”-u”))-vib;(u~-w~)}dl=O (1.9 
6 

Then U* and o* are solutions of the problems P’ and P*, respectively. 

Proof. Since U* is a solution of problem (1.24) and o* is a solution of the corresponding dual 
problem, then by the duality relations (see (1.14)) 

J(u*) = -;I, a(0’,cr’)cfx+~, viO;w;dl 

where o* E QnM. Combining (1.25) and (1.26), we obtain 

J(u’) = J(u*)+ J Y(S(v. w” - u’))dl = 
r, 

(1.26) 



154 S. I. Repin 

which shows that condition (1.20) is satisfied and, ~~quen~y u* and o* are solutions of 
problems P+ and P. 

Thus, if the conditions of Assertion 1 are satisfied, then u* is a solution of the extended 
problem, which contains a displacement discontinuity of magnitude w*-u* on the boundary 
r,. 

Remark. Let Kl and K, be convex sets corresponding to two different yield conditions I;; 
and F2 

Ki=(TE M~IF,(T)GO}, i=l,2, KzCK1 (1.27) 

We denote the functions P and Y corresponding to these sets by HI and Yj and put 

Qi = (CT E Xl CT(X) E Ki a.e. in fi), i = 1,2 

We consider two elastic-plastic problems in the domain a, differing solely in the choice of 
yield condition. We assume we have found the solution @, u* of the F = 4 case, with o* E Q,, 
USER and 

Q)(cs’) = x1 + Ar - L(u,) 

xi =A Hi(r(u*))dr; Ai = 1 Yj(S(V,U” -uO))dl, i= 62 
r1 

(1.2% 

(1.29) 

(1.30) 

If we also have o* E Q, and 

&=A2 

then o* and II* are s~ult~eo~ly also solutions of the second pr~lem (with 
Indeed, since o* E Q, and K, c K,, we have 

@(o*) 6 supl@@?l Q o Q21 s supf*cr)) o E Q,) = @(a*) 

HZ(K) e N*(K) VK E IbIT * x2 d x1 

Using (1.28)~(1.30), we obtain 

sup{@(o)l o E Q21 = @(a*) = x1 + A, - ,!,(I?) aax2 + A2 - L(u*) B Co(a) 

Here we put o =cr* and conclude that condition (1.20) is satisfied in the 
problem, so that o* and u* are solutions. 

F=F,)* 

Qon Q2 

second (F = F2) 

2. EXTENDED FORMULATIONS FOR PROBLEkts WITH YIELD 
CONDITIONS (0.3)40.5) 

For an isotropic medium the quadratic form a(%, t) can be written in the form 

where ~1 and K, are constants of elasticity for the material. In the case under ~~s~dera~o~ the 
yield conditions also depend solely on the deviator and trace of the tensor, and so the functions 
H and Y defined by (1.12) and (1.22) can be written as functions of two pelters s = Spe and 
c =I E” I. For the von Mises yield condition the expressions for W and Y are known to be [13] 
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H(r,s) = s2 +??Q(t); /lo(t) = cu2? teJ4& 
2 S(-h-k,J@), t>k.J&p 

SIX=0 
splc+o 

We will consider other cases. 

The Co~Zo~~~o~~ yield co~~r~o~. Comput~g the supremum over the set K, correspond- 
ing to condition (0.3), we obtain 

where 

if r+E> b and k&,s)~ 0 
w w 

if &&t,s)<O 

q=--& Q 9 J$(t.s)=$ f-G , ( 1 k,(t,s)=Qf-s+Qb 
n 2~ 

if ltc”lC l GSPX Vr E M:“” 
otherwise 

P-1) 

(2.2) 

Since 

K 
lS”(V,V)l= 

( 

n-1 
~l~v12+~lV~12 

i 
) i), =VjUi =Sp(S(V*U))U* =“--upv 

then Y(S(v, u)) can be finite only when 

aSa,=lJ(n2-n)x (2.3) 

When ~>a, v(S(v, u) =sm for any non-zero vector u. Thus a solution containing a discon- 
tinuity (which corresponds to u + 0) along some line or surface can exist only if the constant CI 
in condition (0.3) satisfies condition (2.3). 

Yield condition (0.4). Explicit expressions for H and Y cannot be constructed for arbitrary 
convex functions h. However, one can establish some important properties of these functions. 
We introduce the notation 

As a direct consequence of the definition of Y we have the following assertion. 

Assertion 2. If IQ, c K CI K+&, then 

Corollary. Suppose that the set K corresponding to condition (0.1) contains the set K& 
where a* a, and b>O (or, equivalently, that inequality (0.6) is satisfied). Then Y(,S(v, 
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u)) = +oo for any u f 0, and, consequently, discontinuous solutions are impossible. 
The value of the function Y can be calculated in two different cases, corresponding to 

normal and tangential discontinuities. 

Assertion 3.1. Suppose that K c K& when a G a, b > 0 and 

l!J b =--&leK 

where 1 E h&- is the unit tensor, then 

Y(S(v, u)) = uJdozu), if i&l = 0, D, > 0 (2.4) 

2. Suppose that the function H in (0.4) satisfies the condition 

inf(h(f)lta R) =c>-oo 

then 

Y(S(v, u)) = (f.J - c)lu#G , if U” = 0. 

(2.5) 

(2.6) 

Proof. 1. In the case I u, I= 0, u, > 0 the condition I S’(v, II) I< SpS(v, u)l(na) is obviously 
satisfied when a < a, and using (2.2) we obtain 

Y(s(v, u)) = sup(q~& z I K} 6 sup{zj~~ z E Kab) = bhau, 

On the other hand 

and we thus obtain (2.4). 
2. To prove the second part of the assertion we note that if U, = 0, then I P(v, u) I= I u, I d(s) 

Y(S(v, UN = suphp/l f E Kl =DlP(v,u)), D=sup(lzDII~E K) 

Since I TO l6 b - h(Spt), it follows from (2.5) that D = b-c and that (2.6) holds. 

Yield condition (0.5). Here the expressions for Y and H have the form 

Y(K) = $4 ISpld2 +n2a211cD12, K E M;x” (2.7) 

pt2 + s2, 
H(t, s) = 2 

(2.8) 
l,(lsl/n--qk, /4p)+6,b(t-6.b/4j.~), 

a2s2 b2 if t2+->- 
q2n2 4p2 

where A. = bum1 d(l - S?), and 6. E [0, l] is defined to be the root of the equation 

Isl&u~di=% ) = t - 8b(Alcz2 - l)/(Z@.) 

if A = a2 (which will, for example, be the case for an incompressible material in a plane stress 
state), expression (2.8) is simplified considerably 
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H(w) = 
i 

e2 if 18l3sb/2p 

b(lel-b/4p) if Wl>&~2p 

where 8’ = s2 + t2 l(&t*). We note that here, according to (2.7), discontinuities are possible in 
the normal as well as the tangential field components. However, similar solutions cannot be 
treated as a real discontinuity of the medium. In plane stress state problems, solutions contain- 
ing such discontinuities are associated with the formation of a neck [4], while in three- 
dimensional problems they can be considered as a mathematical description of localization 
processes in plastic deformation [14], which are often accompanied by material decohesion and 
dilation phenomena [15,16]. 

3. SOME EXACT SOLUTIONS 

We will use the results obtained in the first two sections to obtain exact solutions of 
the problems of a twisted tuck-wailed cylinder and the deformed spherical layer, and to show 
that for a broad collection of yield conditions the solution obtained has a discontinuous 
displacement field. 

3.1. Suppose Sz = ((r, S, z) I r, s r s r,, 0G@e2~, -dazsdd), u=(u,, y, u,), where (~,a, z) 
are cylindrical coordinates. We consider a problem with yield criterion (0.4), where 

h(r) 2 0, h(0) = 0 (3.1) 

and boundary conditions 

u = (0, 0,O) when ir = rl, u = (0, U, 0) when r = r2, U = const (3.2) 

a,=Ga,=Q& =O when r=id (3.3) 

where U 5 U. = @bi2&$u2, f3 = rt - Q~, and assume that the external forces f and g are zero. To 
construct an exact solution of this problem we use Assertion 1, where the function d satisfies 
the conditions 

wO=w~=(O,2),0) when r=~l, w”=w~=(O,U,O) whenr=rz (3.4) 

It is easy to verify that in this case the solution of the problem exists (1.24) and is determined as 
follows: 

+ 
u, = u, - ‘-0, u*B=Clr+C2r1 (3.5) 

(3.6) 

Cl = B-W2 - Wj), C;' = f3-*rf@r2 - Url) 

We note that cr* E K nM. ~nditio~ (1.25), using the ~isy~etry of U* and CI*, can be written 
in the form 

(3.7) 

With the help of Assertion 3 and using (3.1) we obtain 
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Y (S(v, Ivy)> = blult\JZ (3.8) 

Since u> 0 and C, = -rfbl2&p, it follows from (3.6)-(3.8) that (1.25) is satisfied. Thus u* and 
o* defined by (3.5) and (3.6) are solutions of the problem with boundary conditions (3.2) and 
(3.3) and the mag~tude of the displacement discontinuity for r=r, is equal to u. Note that 
E(u*) is the unique tensor satisfying relations (1,3)-(1.5) for CT = o*, so that this problem has no 
other solutions. 

We thus conclude that for any yield law (0.4) satisfying condition (3.1) (see Fig. 2) the 
problem of a twisted tuck-walled cylinder with conditions (3.2)-(3.4) has a slip-type discon- 
tinuity at r = r,. 

3.2. Let sz = ((r, 0, u’> I r, LL+: r Q r,, 060~ rc, 0 d cp~ 2x), tl= (u,, 14, u,), where (r, 0, cp) are 
spherical coordinates. 

We consider the elastic-plastic problem in a domain R assuming that the material obeys the 
yield condition (0.3) and that there are no volume forces f. We specify the following boundary 
conditions 

u=(o,o,o) when r=ri, U=(U,O,O) when r=fz (3.9) 

where V=Cr,, C=b/9uK,, a<(~*. 
Using (2.1) it is easy to show that condition (1.20) is satisfied when u* and cr* have the form 

u* = (ix;, 0, O), u:=Cr, o:=&a;=b13a 

Here 

27rb j-(u*)=Cp(a*)=_S;;_c~r,3+T:), d EQn&f 

(3.10) 

(3.11) 

According to (1.20) this means that o* and u* are solutions of the variational problems P* 
and P’. We note that $=Cr, when r= r, and, consequently, the infimum of the extended 
functional is attained at a discontinuous function. 

We now consider the same problem, except that the yield condition is criterion (0.4) rather 
than (0.3), with the function h specified by 

t;r(r) 2 u,t, h@/u) = b (3.12) 

The corresponding curves I c? I- b - h(Spo) are shown in Fig. 3 (curves l-3). We will show that 
u* and o* defined by (3.10) are also solutions of this problem. To this end we use the remark in 
Assertion 1 and put 

F,(a) = I& + a,Spo - b, F2(a) = laDI + h(Spcs) - b 

Since Ib*D l+h(Spo*) = ( h b/a -b we have CI*E&. Moreover, from (2.2) and the first part of ) - 
Assertion 1 it follows that (1.29) is satisfied. Thus u* and o* satisfy (3.11), and the infimum of 
r(u) is attained at a discontinuous function. 

In the case when a= a = 1166 one can construct an exact solution of the problem of a 
deformed spherical layer with yield condition (0.3) and boundary conditions (3.9) when 
U =G U, = 2br, /3J(6)&. If U c U, = 2fib/d(6)r,‘(3Ko + 4p), p = r;’ - $, the solution is elastic 

l&U; = 0, u: = p-Q&l - $?I 
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IbDl 

b _----- 

Fig. 2. Fig. 3. 

In order to construct a solution for U, c U < U, we use Assertion 1, and choose the function w” 

in (1.24) so that 

wO= WY when r =rl, w”= w! when r = r2 

WY = (u, 0, O), w; = (U, 0,O) 

where the constant 2) is defined by the equation 

(3.13) 

We note that u > 0 when U, <U c U,. In this case problem (1.24) has the following solution 

* 
uq = u’e = 0, u: = C,r + C2r2, 0; =& = cs& = 0 (3.14) 

* 3li a, = 3KoC, - p C2, a; z!I! =o; =3KoC,+ r’ C2 

where 

Cl = (Uri - ur:)fF, C2 = r&r2 - Url)p-l (3.15) 

Taking (2.2) and (3.14) into account, condition (1.25) can be written in the form 

3KcC1/2p - 2CJr: = bh p 

Using (3.13) and (3.15), it is easy to verity that this equality is satisfied. Thus u* and o* defined 
by formulae (3.14) and (3.15) are solutions of the problem with boundary condition (3.9). For 
U, c U c U, this solution has a discontinuity of magnitude u at r = r,. We note that since 

F(o*)=~lC,l++C, -b<O Vre(q,r2] 

then, according to (1.5), h, I 0 and, consequently, E(u*) is the unique tensor which together 
with o satisfies relations (1.4) and (1.5). 
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